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During development, children improve in learning from feedback to
adapt their behavior. However, it is still unclear which neural
mechanisms might underlie these developmental changes. In the
current study, we used a reinforcement learning model to investigate
neurodevelopmental changes in the representation and processing
of learning signals. Sixty-seven healthy volunteers between ages 8
and 22 (children: 8--11 years, adolescents: 13--16 years, and adults:
18--22 years) performed a probabilistic learning task while in
a magnetic resonance imaging scanner. The behavioral data
demonstrated age differences in learning parameters with a stron-
ger impact of negative feedback on expected value in children.
Imaging data revealed that the neural representation of prediction
errors was similar across age groups, but functional connectivity
between the ventral striatum and the medial prefrontal cortex
changed as a function of age. Furthermore, the connectivity strength
predicted the tendency to alter expectations after receiving negative
feedback. These findings suggest that the underlying mechanisms
of developmental changes in learning are not related to differences
in the neural representation of learning signals per se but rather in
how learning signals are used to guide behavior and expectations.
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Introduction

The ability to learn contingencies between actions and positive

or negative outcomes in a dynamic environment forms the

foundation of adaptive behavior (Rushworth and Behrens

2008). Learning from feedback in probabilistic environments

is sensitive to developmental changes, given the developmental

improvements in learning from positive and negative feedback

which are observed until early adulthood (Crone and van

der Molen 2004; Hooper et al. 2004; Huizinga et al. 2006).

Intriguingly, prior neuroimaging studies have demonstrated

developmental differences in neural circuits associated with

learning from feedback in a fixed static learning environment

(Crone et al. 2008; van Duijvenvoorde et al. 2008). These

studies show that dorsolateral prefrontal cortex (DLPFC) and

parietal cortex are increasingly engaged when receiving

negative feedback. However, in a probabilistic learning envi-

ronment, learning takes place gradually over trials, and both

positive and negative feedback informs future behavior. There-

fore, an important question concerns the neural mechanisms

that underlie developmental differences in probabilistic learning.

A crucial aspect of adaptive learning is using feedback to

estimate the expected value of the available options. The first

step in estimating the expected value is the computation of

prediction errors, that is, calculating the difference between

expected and experienced outcomes. Prediction errors can be

positive, indicating that outcomes are better than expected or

negative, indicating that outcomes are worse than expected

(Sutton and Barto 1998). Next, these prediction errors are used

to update the expected value associated with the chosen

option: The expected value increases when the prediction error

is positive and decreases when the prediction error is negative.

Prior neuroimaging studies have shown that activity in the

ventral striatum, a target area of dopaminergic midbrain neurons,

correlates with positive and negative prediction errors (Knutson

et al. 2000; Pagnoni et al. 2002; e.g., McClure et al. 2003, 2004;

O’Doherty et al. 2003). The relation between prediction errors

and subsequent learning is confirmed by studies demonstrating

an association between the representation of prediction errors

in the striatum and individual differences in performance on

probabilistic learning tasks (PLTs) (Pessiglione et al. 2006;

Schönberg et al. 2007). Furthermore, several studies have

reported increased sensitivity of the striatum in adolescence

after receiving monetary rewards or following other emotional

stimuli (Galvan et al. 2006; McClure-Tone et al. 2008; Van

Leijenhorst et al. 2009). This suggests that developmental

differences in striatal sensitivity to rewards might contribute to

the observed developmental differences in adaptive behavior. This

hypothesis is supported by a recent developmental study that

revealed heightened sensitivity in the striatum to positive

prediction errors in adolescents relative to children and adults

(Cohen et al. 2010).

In contrast, there are also several studies using less salient

rewards that have reported differences in adaptive behavior but

suggest that there is a stable striatal activation pattern across

adolescence (Casey et al. 2004; van Duijvenvoorde et al. 2008;

Velanova et al. 2008). However, none of these developmental

studies investigated the neural representation of prediction

errors directly. Therefore, it is possible that developmental

differences in the representation of prediction errors are

contributing to developmental changes in adaptive behavior.

Several neuroimaging studies have shown that activity in the

medial prefrontal cortex (mPFC) correlates with the expected

value of stimuli or actions (for review, see Rangel et al. 2008).

Representations of expected values in the mPFC are thought to

be updated by means of frontostriatal connections, relating striatal

prediction errors to medial prefrontal representations (Pasupathy
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and Miller 2005; Frank and Claus 2006; Camara et al. 2009). In

support of this hypothesis, recent studies have shown increased

functional connectivity between the ventral striatum and mPFC

during feedback processing (Camara et al. 2008; Munte et al.

2008). Furthermore, group differences in learning may be related

to the connectivity strength between the striatum and the PFC

during feedback processing. For example, substance-dependent

individuals have an intact striatal representation of prediction

errors but are impaired in subsequently using these signals for

learning (Park et al. 2010). This study showed that there is

a positive relation between the learning speed and the strength of

functional connectivity between the striatum and PFC (see also

Klein et al. 2007). Therefore, a second possible mechanism that

may contribute to developmental changes in adaptive behavior is

an increase in striatal--mPFC connectivity. Indeed, there are also

still substantial changes in anatomical connectivity between the

subcortical structures and the PFC during adolescence (Supekar

et al. 2009; Schmithorst and Yuan 2010).

To test these 2 hypotheses, a computational reinforcement

learning model was applied to investigate developmental differ-

ences in 1) the neural representation of prediction errors and 2)

changes in frontostriatal connectivity. Participants of 3 age groups

(children ages 8--11, adolescents ages 13--16, and young adults

ages 18--22) performed a PLT (Frank et al. 2004) in a magnetic

resonance imaging (MRI) scanner. We expect that with age,

there is an improvement in learning from probabilistic feedback

(Crone and van der Molen 2004; van den Bos et al. 2009). In

order to capture age-related changes in learning from positive

and negative feedback separately, we use a reinforcement

learning model with separate learning rates for positive and

negative feedback (Kahnt et al. 2009). The individually estimated

trial-by-trial prediction errors generated by this reinforcement

model were subsequently used to test whether developmental

differences in learning reflect functional differences in the

representation of prediction errors and/or developmental

changes in the propagation of prediction errors as measured by

functional frontostriatal connectivity (Park et al. 2010).

Materials and Methods

Participants
Sixty-seven healthy right-handed paid volunteers ages 8--22 participated

in the functional MRI (fMRI) experiment. Age groups were based on

adolescent development stage, resulting in 3 age groups: children (8--11

years old, n = 18; 9 female), mid-adolescents (13--16 years old, n = 27;

13 female), and young adults (18--22 years old, n = 22; 13 female). A chi-

square analysis indicated that gender distribution did not differ between

age groups, X2 (2) = 0.79, P = 0.67. All participants reported normal or

corrected-to-normal vision, and participants or their caregivers indicated

an absence of neurological or psychiatric impairments. Participants gave

informed consent for the study, and all procedures were approved by

the medical ethical committee of the Leiden University Medical Center.

Participants completed 2 subscales (similarities and block design) of

either the Wechsler Adult Intelligence Scale or the Wechsler Intelligence

Scale for Children in order to obtain an estimate of their intelligence

quotient (Wechsler 1991, 1997). There were no significant differences

in estimated IQ scores between the different age groups, F2,66 = 1.63,

P = 0.20 (see Table 1).

Task Procedure
The procedure for the PLT (Frank et al. 2004; van den Bos et al. 2009)

was as follows: The task consisted of 2 stimulus pairs (called AB and

CD). The stimulus pairs consisted of pictures of everyday objects (e.g.,

a chair and a clock). Each trial started with the presentation of 1 of the

2 stimulus pairs, and subsequently, the participant had to choose one

(e.g., A or B). Stimuli were presented randomly on the left or the right

side of the screen. Participants were instructed to choose either the left

or the right stimulus by pressing a button with the index or middle

finger of the right hand. Responses had to be given within a 2500-ms

window, which was followed by a 1000-ms feedback display (see

Fig. 1A). If no response was given within 2500 ms, the text ‘‘too slow’’

was presented on the screen.

Feedback was probabilistic; choosing stimulus A led to positive

feedback on 80% of AB trials, whereas choosing stimulus B led to

positive feedback on 20% of these trials. The CD pair procedure was

similar, but probability for reward was different; choosing stimulus C

led to positive feedback on 70% of CD trials, whereas choosing stimulus

D led to positive feedback on 30% in these trials.

Participants were instructed to earn as many points as possible (as

indicated by receiving a positive feedback signal) but were also

informed that it was not possible to receive positive feedback on every

trial. After the instructions and before the scanning session, the

participants played 40 practice rounds on a computer in a quiet

laboratory to ensure that they understood the task.

In total, the task in the scanner consisted of 2 blocks of 100 trials

each: 50 AB trials and 50 CD trials per block. The first and the second

block consisted of different sets of pictures, and therefore, participants

had to learn a new mapping in both task blocks. The data from the last

60 trials of each block were also reported in another study using a rule-

based analysis (van den Bos et al. 2009). The duration of each block was

approximately 8.5 min. The stimuli were presented in pseudorandom

order with a jittered interstimulus interval (min = 1000 ms, max = 6000

ms) optimized with OptSeq2 (Dale 1999).

Reinforcement Learning Model
A standard reinforcement learning model (Sutton and Barto 1998) was

used to analyze behavioral and neural data (McClure et al. 2003; Cohen

and Ranganath 2005; Haruno and Kawato 2006; Frank and Kong 2008;

Kahnt et al. 2009). The reinforcement learning model uses the

prediction error (d) to update the decisions weights (w) associated

with each stimulus (in this case A, B, C, or D). Thus, whenever feedback

is better than expected, the model will generate a positive prediction

error which is used to ‘‘increase’’ the decision weight of the chosen

stimulus (e.g., stimulus A). However, when feedback is worse than

expected, the model will generate a negative prediction error, which is

used to ‘‘decrease’’ the decision weight of the chosen stimulus (e.g.,

stimulus B). The impact of the prediction error is usually scaled by the

learning rate (a). We extended the standard reinforcement learning

model by using separate learning rates for positive feedback (apos) and
negative feedback (aneg) (e.g., Kahnt et al. 2009). Thus, positive and

negative feedback might have a different impact of the decisions

weights. To model trial-by-trial choices, we used the soft-max

mechanism to compute the probability (P) of choosing a high

probability target (A or C) on trial t as the difference in the decision

weights in each trial (wt) associated with each stimulus, passed through

a sigmoid function (Montague et al. 2004; Kahnt et al. 2009). For

example, when stimulus pair AB is presented, the probability of

choosing A is determined by:

Table 1
Brain regions revealed by whole-brain contrasts

Anatomical region L/R BA Z MNI coordinates

x y z

Prediction error
Ventral striatum L/R 6.33 �19 13 �8
Right parahippocampal gyrus R 5.61 37 �13 �37
Medial PFC L/R 10/11 5.92 2 51 0

PPI (positive[ negative)
Medial prefrontal cortex L/R 10 6.02 3 44 2
Ventral striatum (caudate and putamen) L/R 7.50 9 9 3

PPI (positive[ negative) 3 age
Medial PFC L 10 5.32 �9 49 �2

Note: Montreal Neurological Institute (MNI) coordinates, peak voxels reported.
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PðAÞt =
1

1 + e –b�ðwðAÞt –wðBÞt Þ
ð1Þ

where b is the inverse temperature accounting for the stochasticity of

the choices.

After each decision, the prediction error (d) is calculated as the

difference between the outcome received (r = 1 for positive feedback

and 0 for negative feedback) and the decision weight (wt) for the

chosen stimulus:

dt=rt –wðchosen stimulusÞ ð2Þ

Subsequently, the decision weights are updated according to:

wt=1=wt +k3 aðoutcomeÞt 3 dt ð3Þ
where k is 1 for the chosen and 0 for the unchosen stimulus,

a(outcome) is a set of learning rates for positive (apos) and negative

feedback (aneg), which scale the effect of the prediction error on the

future decision weights and thus subsequent decisions. For example,

a high learning rate for positive feedback but a low learning rate for

negative feedback indicates that positive feedback has a high impact on

future behavior, whereas negative feedback will hardly change future

behavior. These 2 learning rates were individually estimated by fitting

the model predictions (P(high probability stimulus)) to participants’

actual decisions. We used the multivariate constrained minimization

function (fmincon) of the optimization toolbox implemented in

MATLAB 6.5 for this fitting procedure. Initial values for learning rates

were apos = aneg = 0.5 and for action values, w(left) = w(right) = 0.

Finally, we performed behavioral analyses with an alternative model

with just one-learning parameter in order to benchmark the perfor-

mance of the two-learning parameter model. Model comparisons

revealed that the 2 parameter had a superior fit to the behavioral data,

according to both the Bayesian and Akaike information criterion (BIC

and AIC, see Supplementary Table 2). Because the two-learning rate

model provides a better fit, this is used in all subsequent analyses.

Behavioral Analyses
To examine the correspondence between model predictions and

participants’ behavior, model predictions were compared with the

actual behavior on a trial-by-trial basis. Model predictions based on

estimated learning rates were regressed against the vector of partic-

ipants’ actual choices, and individual regression coefficients were used to

compare group differences in model fits. Only when there are no

differences in model fit between groups, one can confidently compare

model parameters.

Next, we defined 2 dependent variables of behavioral performance to

further investigate the relation between model parameters and choice

behavior: p(lose/shift) and p(win/stay). ‘‘Win--stay’’ was computed by

calculating the proportion of choice repetitions following positive

feedback and the total number of positive feedback events. Likewise,

‘‘lose--shift’’ was computed by calculating the proportion of choice

shifts following negative feedback and the total number of negative

feedback events. To test whether the individually estimated learning

rates a(win) and a(loss) predict different aspects of participants’

behavior, both learning rates were simultaneously regressed against

p(lose--shift) and p(win--stay), respectively, using multiple regression.

Data Acquisition
Participants were familiarized with the scanner environment on the

day of the fMRI session through the use of a mock scanner, which

simulated the sounds and environment of a real MRI scanner. Data were

acquired using a 3.0T Philips Achieva scanner at the Leiden University

Medical Center. Stimuli were projected onto a screen located at the head

of the scanner bore and viewed by participants by means of a mirror

mounted to the head coil assembly. First, a localizer scan was obtained for

each participant. Subsequently, T�
2-weighted Echo-Planar Images (EPI)

(time repetition [TR] = 2.2 s, time echo = 30 ms, 80 3 80 matrix, FOV =
220, 35, 2.75 mm transverse slices with 0.28 mm gap) were obtained

during 2 functional runs of 232 volumes each. A high-resolution T1-

weighted anatomical scan and a high-resolution T2-weighted matched-

bandwidth anatomical scan, with the same slice prescription as the EPIs,

were obtained from each participant after the functional runs. Stimulus

presentation and the timing of all stimuli and response events were

acquired using E-Prime software. Head motion was restricted by using

a pillow and foam inserts that surrounded the head.

fMRI Data Analysis
Data were preprocessed using SPM5 (Wellcome Department of

Cognitive Neurology, London). The functional time series were realigned

Figure 1. (A) Participants chose one stimulus by pressing the left or right button and received positive or negative feedback according to probabilistic rules. Two pairs of stimuli
were presented to the participants: (1) the AB pair with 80% positive feedback for A and 20% for B and (2) the CD pair with 70% positive feedback for Cand 30% for D. (B)
Estimated model fits per age group. (C) Estimated learning rates for positive and negative feedback per age group. Error bars represent standard errors in all graphs.
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to compensate for small head movements. Translational movement

parameters never exceeded 1 voxel ( <3 mm) in any direction for

any subject or scan. There were no significant differences in move-

ment parameters between age groups F2,65 = 0.15, P = 0.85, (see

Supplementary Table S1). Functional volumes were spatially normalized

to EPI templates. The normalization algorithm used a 12 parameter

affine transformation together with a nonlinear transformation in-

volving cosine basis functions and resampled the volumes to 3-mm

cubic voxels. Functional volumes were spatially smoothed using a 8 mm

full-width half-maximum Gaussian kernel. The MNI305 template was

used for visualization, and all results are reported in the MNI305

stereotaxic space (Cosoco et al. 1997).

Statistical analyses were performed on individual participants’ data

using the general linear model (GLM) in SPM5. The fMRI time series

data were modeled by a series of events convolved with a canonical

hemodynamic response function (HRF). The presentation of the

feedback screen was modeled as 0 duration events. The stimuli and

responses were not modeled separately as these occurred in one prior

or overlapping EPI images as feedback presentation.

To investigate the neural responses to feedback valence and

prediction errors, we set up a GLM with the onsets of each feedback

type (positive and negative) as regressors. In this model, the stimulus

functions for feedback were parametrically modulated by the trial-wise

prediction errors derived from the reinforcement learning model. The

modulated stick functions were convolved with the canonical HRF.

These regressors were then orthogonalized with respect to the onset

regressors of positive and negative feedback trials and regressed against

the blood oxygen level--dependent (BOLD) signal.

Finally, to investigate linear and quadratic age trends, we applied

polynomial expansion analysis (Büchel et al. 1996) with age as

continuous variable, using the forward model selection as described

by Büchel et al. (1998). Thresholds were set to P < 0.05 Family Wise

Error with an extend threshold of 10 continuous voxels for the whole

group analyses. Analyses of age trends were set to P < 0.001

uncorrected with an extend threshold of 20 continuous voxels,

reporting the SPM5 implemented small volume correction (SVC) FWE

corrected P values, using the whole group psychophysiological

interaction (PPI) mPFC as a volume of interest 2.

Region of Interest Analyses
We used the Marsbar toolbox for use with SPM5 (http://marsbar.

sourceforge.net, Brett et al. 2002) to perform Region of Interest (ROI)

analyses to further characterize patterns of activation and estimate

individual differences in connectivity measures.

Functional Connectivity Analyses
To explore the interplay between the ventral striatum and other

brain regions during reinforcement-guided decision-making, func-

tional connectivity was assessed using PPI analysis (Friston 1994;

Cohen et al. 2005, 2008). The functional whole-brain mask, in which

activity correlated significantly with prediction errors for the whole

group, was masked with an anatomical striatum ROI of the Marsbar

toolbox that included the bilateral caudate, putamen, and nucleus

accumbens, to create the seed ROI. The method used here relies on

correlations in the observed BOLD time series data and makes no

assumptions about the nature of the neural event that contributed to

the BOLD signal (Cohen et al. 2008). For each model, the entire time

series over the experiment was extracted from each subject in the

clusters of the (left and right) ventral striatum. Regressors were

then created by multiplying the normalized time series of each

ROI with condition vectors that contained ones for 4 TRs after

positive or negative prediction errors and zeros otherwise (see also

Cohen and Ranganath 2005; Kahnt et al. 2009; Park et al. 2010). Thus,

the 2 condition vectors of positive and negative prediction errors

(containing ones and zeros) were each multiplied with the time

course of each ROI. These regressors were then used as covariates in

subsequent analyses.

The time series between the left and right hemispheres for the

ventral striatum were highly correlated (r = 0.89). Therefore, parameter

estimates of left- and right structures were collapsed, and thus,

represent the extent to which feedback-related activity in each voxel

correlates with feedback-related activity in the bilateral ventral

striatum.

Individual contrast images for positive versus negative feedback were

computed and entered into second-level one-sample t-tests. In order to

find age-related differences in the whole-brain analyses of functional

connectivity with the ventral striatum, we performed a second-level

regression analysis with a regressor for age.

Results

Behavioral Data

Reinforcement Learning

First, we assessed how the model parameters differed between

age groups. First of all, there was a good fit of the model to

participants’ behavior; the average regression coefficient was

significantly above zero for all age groups (all P’s < 0.001.

Fig. 1B). Importantly, the model fit did not differ significantly

between groups (F2,64 = 0.96, P = 0.38), reassuring that

parameters estimations could be compared between groups.

Importantly, we also found no significant relation between age

and the value of the stochasticity parameter b (r = 0.05, P =
0.74). This indicates that behavioral differences are not due to

age differences in choice stochasticity. Furthermore, previous

behavioral analyses suggest that there are no significant

difference in learning speed and that participants of all ages

reach a stable behavioral pattern after about 60 trials, showing

matching behavior (see van den Bos et al. 2009).

Next, a 2 (learning parameters) 3 3 (age groups) analysis of

variance tested for age differences in learning from positive and

negative feedback. This analysis showed a significant group by

parameter interaction (F2,64 = 12.34, P < 0.001, see Fig. 1C), and

post hoc tests revealed that there was an age-related decrease

in aneg, F2,67 = 9.87, P < 0.001 and a marginal age-related

increase in apos, F2,67 = 2.73, P = 0.06.

Finally, to assess whether different learning rates captured

different aspects of behavior, awin and aloss were simultaneously

regressed against the 2 dependent variables of this study [p(win/

stay)and p(lose/switch)]. A multiple regression of both learning

rates on p(win/stay) fitted significantly (r = 0.51, F2,64 = 11.05,

P < 0.001), but only awin (ba(win) = 0.49, t64 = 4.46, P < 0.001)

and not aloss (ba(loss) = –0.27, t64 = –2.04, P = 0.08) contributed

significantly to the regression. In contrast, in the regression

against p(lose/switch) (r = 0.33, F2,64 = 6.85, P < 0.01), aloss
(ba(loss) = 0.32, t64 = 2.55, P < 0.01) but not awin (ba(win) = –0.218,

t64 = –1.83, P = 0.08) contributed significantly.

Taken together, these results show that the learning rates

captured different behavioral aspects of reinforcement-guided

decision-making. The results further show that mainly the age-

related decrease in the influence of negative feedback on

expected values underlies developmental differences in adap-

tive behavior.

fMRI Results

Model-Based fMRI

Across all participants, individually generated trial-wise pre-

diction errors (positive and negative combined) correlated

significantly with BOLD responses in bilateral ventral striatum,

mPFC, and the right parahippocampal gyrus (Fig. 2A and Table 1).

Activity in the ventral striatum was localized at an area
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comprising the ventral intersection between the putamen and

the head of the caudate. Tests for positive and negative

prediction errors separately revealed comparable results.

Whole-brain regression analyses for age differences revealed

no linear or nonlinear age group differences (Fig. 2B). This

analysis was repeated for positive and negative prediction

errors separately, and these analyses also revealed no linear or

nonlinear age effects. These findings demonstrate that pre-

diction errors (positive or negative) are not represented

differently between the 3 age groups.

Functional Connectivity

Functional connectivity between the striatum and other brain

regions was assessed during processing of negative and positive

feedback using PPI. The contrast used for testing functional

connectivity was positive > negative feedback. Note that the

vectors for positive feedback events contain all positive

prediction error events, and the vectors for negative feedback

events contain all negative prediction error events. Significantly

enhanced functional connectivity was found during positive >

negative feedback between the bilateral ventral striatum seed

and the mPFC (Fig. 3A). The opposite contrast (negative >

positive feedback) did not reveal any significant changes in

functional connectivity.

Next, we examined age differences in ventral striatum

connectivity by adding age as a regressor to the second-level

PPI analysis. These analyses revealed age-related increases in

functional connectivity of the ventral striatum seed with the

mPFC (BA32/10) for positive > negative feedback (Fig. 3B) at

an uncorrected threshold of P < 0.001 and k > 20 voxels (SVC:

FWE, P < 0.02). No other areas were found when testing for

nonlinear age effects in functional connectivity.

To further illustrate the age-related changes in frontostriatal

connectivity, we extracted the strength of functional connec-

tivity between ventral striatum and mPFC for each participant

and plotted it against age as a continuous variable (Fig. 3C). This

plot reveals that the connectivity pattern shifts from a stronger

connection after negative feedback for the youngest partic-

ipants toward a stronger connection after positive prediction

errors for the oldest participants.

Finally, we performed ROI analyses to investigate whether

striatum--mPFC connectivity was related to the individual

learning parameters. The differential connectivity strength

(positive > negative) between the ventral striatum and mPFC

ROI was used to predict the individual differences in learning

rates for positive and negative feedback. The relative connec-

tivity measure correlated negatively with the learning rate for

negative feedback (r = –0.41, P < 0.001, Fig. 3D) and,

moderately, positively with the learning rate for positive

feedback (r = 0.26, P = 0.06). Thus, there was stronger

striatum--mPFC coupling during negative > positive feedback in

participants for whom negative feedback had a relatively large

impact on future expected value, whereas the reverse was true

(i.e., stronger coupling during positive > negative feedback) in

Figure 2. (A) Regions in the mPFC, ventral striatum, and parahippocampal gyrus in which BOLD signal was significantly correlated with prediction errors. Thresholded at P\
0.05, FWE, k[ 10. (B) Parameter estimates of the prediction errors per age group in the functionally defined ROIs for the mPFC, ventral striatum, and parahippocampal gyrus.
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participants for whom positive feedback had a relatively large

impact on future expected value.

To summarize, increased functional connectivity between

the ventral striatum and mPFC was observed during processing

of positive feedback compared with negative feedback.

Furthermore, this analysis revealed that the relative strength

of the striatum--mPFC connectivity is correlated positively with

age but negatively with the learning rate for negative feedback.

Discussion

The goal of this study was to examine developmental changes

in the neural mechanisms of probabilistic learning. The

reinforcement model showed that with increasing age,

negative feedback had decreasing effects on future expected

values. Imaging analyses revealed that neural activation to

prediction errors did not differ between age groups; however,

age differences in the learning rates were associated with an

age-related increase in functional connectivity between the

ventral striatum and the mPFC.

Developmental Changes in Learning Rates

Using a reinforcement learning model, we were able to

disentangle differences in sensitivity to positive and negative

feedback by estimating learning rates for positive and negative

feedback separately. These estimated learning rates reflect the

degree to which the future expected value of a stimulus will be

changed after positive or negative prediction errors. Impor-

tantly, the model revealed that developmental differences in

adaptive behavior were not related to differences in stochas-

ticity in choice behavior. However, the analyses showed that

with age, there is a decrease in the learning rate for negative

prediction errors (aneg). This finding indicates that with

increasing age, particularly, the impact of negative prediction

errors on the future expected value decreases. Furthermore, as

expected, the individual differences in learning rates were

related to shifting behavior, showing a relation between

updating of expected value and decision strategies. These

results are consistent with developmental studies that have

shown with increasing age, participants are less influenced by

irrelevant negative feedback (Crone et al. 2004; Eppinger et al.

2009).

Taken together, the results show that an extended re-

inforcement model is 1) able to identify different computa-

tional processes involved in adaptive behavior and 2) reveal an

important (single) parameter underlying age-related changes in

adaptive learning, the learning rate for negative learning signals.

Additionally, given that the model fits the behavior of all

ages equally well, it provides a solid basis for exploring the

neurodevelopment changes in representing and the processing

of learning signals.

Neural Representation of Prediction Errors

Consistent with previous studies, trial-by-trial prediction errors

generated by the reinforcement learning model correlated with

activity of a network of areas including the ventral striatum and

the mPFC (Pagnoni et al. 2002; McClure et al. 2003; O’Doherty

et al. 2003; Cohen and Ranganath 2005). This result indicates

that these areas are sensitive to differences in expected versus

received feedback, showing increased activation when feed-

back is better than expected and decreased activation when

the feedback is worse than expected. Interestingly, our

Figure 3. (A) Regions that showed increased functional connectivity with the striatal
seed region after positive compared with negative feedback. Thresholded at P \
0.05, FWE, k [ 10. (B) Region in the mPFC that revealed age-related changes in
functional connectivity with the striatal seed region. Thresholded at P \ 0.001,
uncorrected, k[20. (C) Scatterplot depicting the relationship between the functional
connectivity measure of the striatum--mPFC (positive[ negative feedback) and age.
(D) Scatterplot depicting the relationship between the functional connectivity
measure of the striatum--mPFC (positive [ negative feedback) and learning rate
(aneg).
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analyses did not reveal any (linear or nonlinear) age-related

differences in (positive or negative) prediction error--related

activity in the striatum.

These findings are consistent with prior studies using

cognitive learning tasks, which have also reported stable

striatal activation patterns across adolescence (Casey et al.

2004; van Duijvenvoorde et al. 2008; Velanova et al. 2008).

However, the results of the current study provide different

findings in comparison with affective decision-making para-

digms. These studies have reported a peak in sensitivity of the

striatum in adolescence after receiving monetary rewards or

highly emotional stimuli (Galvan et al. 2006; McClure-Tone

et al. 2008; Van Leijenhorst et al. 2009), which may be related

to adolescent typical changes in the dopamine system (for

a review, see Galvan 2010). Importantly, a recent developmen-

tal study of reward-based learning using a comparable re-

inforcement model with a single learning rate (for both

negative and positive feedback), has also shown heightened

sensitivity to positive prediction errors in adolescents com-

pared with children and adults (Cohen et al. 2010) (It should

be noted, however, that Cohen and colleagues compared

different age groups, as adolescence in this study was defined

as the age range 14--19 years and adulthood as 25--30 years. In

this respect, the findings of the current study and the findings

of Cohen et al. are not directly comparable). Interestingly,

Cohen et al. (2010) observed adolescent-specific increases in

reaction times for large relative to small rewards. This suggests

that particularly, in the presence of salient rewards, adolescents

show increased striatal sensitivity, which in turn might bias

decision-making processes. One possibility is that during

adolescence, the presence of salient rewards increases the

baseline level of striatal dopamine, which in turn increases

sensitivity to positive prediction errors and may even decrease

the sensitivity to negative prediction errors (Frank et al. 2004;

Frank and Claus 2006). In future studies, it will be important to

further examine how the prediction error representation can

be modulated by the use of specific reward magnitude

manipulations, and how these manipulations affect decision-

making parameters.

Developmental Changes in Striatum--mPFC Connectivity

Connectivity analyses revealed that during feedback process-

ing, the seed region in the ventral striatum sensitive to

prediction errors showed increased functional connectivity

with the mPFC during positive compared with negative

feedback. This pattern of connectivity is consistent with

several studies that have shown feedback-related changes in

functional connectivity of the striatum (for a review, see

Camara et al. 2009). In contrast to the neural representation of

prediction errors, subsequent analyses revealed age-related

changes in striatum--mPFC functional connectivity. The pattern

shifted toward stronger connectivity after positive feedback

with increasing age. Importantly, the striatum--mPFC connec-

tivity strength was negatively correlated with the negative

learning rate. Taken together, these results suggest that the

age-related increase in striatum--mPFC connectivity underlies

changes in adaptive behavior. In other words, developmental

changes in learning are not related to differences in the

computation of learning signals per se, but rather to differences

in how learning signals are used to update future expectations

and subsequent behavior.

Given that during adolescent development, there are still

substantial changes in structural connectivity within the PFC

(Schmithorst and Yuan 2010) and it could be hypothesized that

the developmental differences in striatum--mPFC functional

connectivity are related to changes in structural connectivity

between these 2 structures (Cohen et al. 2008). In future

developmental studies, it will be of interest to combine

measures of structural and functional connectivity in order to

further explore this hypothesis.

A final question concerns how these results relate to

previous developmental studies on feedback processing in

deterministic environments (Crone et al. 2008; van Duijven-

voorde et al. 2008). Learning theories have suggested 2

separate learning strategies (Daw et al. 2005; Maia 2009);

a model-based strategy that operates on explicit task repre-

sentations, such as rules describing the reward contingencies

given the current state, and a model-free strategy that uses

feedback directly to compute action values without any

explicit model of the environment. Furthermore, research has

suggested that the relative contribution of each learning

strategy might be dependent or their respective certainties

(Doya et al. 2002; Daw et al. 2005).

Thus, given the deterministic or rule-based structure of

previous experimental paradigms, it is likely that reported

developmental changes in the DLPFC-parietal network repre-

sent differences in the learning system that operates on task

representations, whereas the current study shows develop-

mental differences in neural systems that subserve the model-

free computational strategy (see also Galvan et al. 2006; Cohen

et al. 2010). This interpretation is supported by a recent study

that showed that updating model-based task representations

relies on the DLPFC-parietal network, whereas model-free

feedback updating was associated with the striatal activity

(Gläscher et al. 2010).

The challenge for future developmental studies will be to

disentangle the relative contributions of these learning

strategies dependent on the learning context (Daw et al.

2005) and to understand how these 2 strategies, and related

neural systems, contribute to developmental changes in

feedback learning. An interesting hypothesis is that in a context

where learning mainly relies on a model-based strategy,

adolescents may be less susceptible to the presence of salient

rewards than when learning is mainly based on a model-free

strategy.

Conclusion

In the current study, we used a reinforcement learning model

to investigate neurodevelopmental changes in the representa-

tion and processing of learning signals in a probabilistic

environment. The results of this study advance our un-

derstanding of the mechanisms underlying developmental

changes related to learning in a probabilistic environment.

First, behavioral analyses singled out a specific computa-

tional process, updating based on negative prediction errors,

which showed developmental differences. Importantly, the

age-related differences in updating were also related to shifting

behavior after negative feedback. Second, we provide evidence

that developmental differences in adaptive learning may not be

due to differences in the computation of learning signals, but

rather to developmental differences in how learning signals are

used to guide behavior and expectations. The imaging results
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suggest that the latter process is reflected in the strength of

functional connectivity between the striatum and the mPFC.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/

Funding

Vidi grant from the Netherlands Organisation for Scientific

Research to E.A.C.

Notes

We thank Berna Guroglu and Bianca van den Bulk for help with data

collection. Conflict of Interest : None declared.

References

Brett MC, Anton J-L, Valabregue R, Poline J-B. 2002. Region of interest

analysis using an spm toolbox. Neuroimage. 16:497.
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Büchel C, Wise RJS, Mummery CJ, Poline JB, Friston KJ. 1996. Nonlinear

regression in parametric activation studies. Neuroimage. 4:60--66.

Camara E, Rodriguez-Fornells A, Munte TF. 2008. Functional connectivity

of reward processing in the brain. Front Hum Neurosci. 2:19--19.

Camara E, Rodriguez-Fornells A, Ye Z, Munte TF. 2009. Reward

networks in the brain as captured by connectivity measures. Front

Neurosci. 3:350--362.

Casey BJ, Davidson MC, Hara Y, Thomas KM. 2004. Early development

of subcortical regions involved in non-cued attention switching.

Dev Sci. 7:534--542.

Cohen JR, Asarnow RF, Sabb FW, Bilder RM, Bookheimer SY, Knowlton

BJ, Poldrack RA. 2010. A unique adolescent response to reward

prediction errors. Nat Neurosci. 13:669--671.

Cohen MX, Elger CE, Weber B. 2008. Amygdala tractography predicts

functional connectivity and learning during feedback-guided de-

cision-making. Neuroimage. 39:1396--1407.

Cohen MX, Heller AS, Ranganath C. 2005. Functional connectivity with

anterior cingulate and orbitofrontal cortices during decision-

making. Brain Res Cogn Brain Res. 23:61--70.

Cohen MX, Ranganath C. 2005. Behavioral and neural predictors of

upcoming decisions. Cogn Affect Behav Neurosci. 5:117--126.

Cosoco CA, Kollokian V, Kwan RKS, Evans AC. 1997. Brainweb: online

interface of a 3-d mri simulated brain database. Neuroimage.5:s425.

Crone EA, Jennings JR, Van der Molen MW. 2004. Developmental

change in feedback processing as reflected by phasic heart rate

changes. Dev Psychol. 40:1228--1238.

Crone EA, van der Molen MW. 2004. Developmental changes in real life

decision making: performance on a gambling task previously shown

to depend on the ventromedial prefrontal cortex. Dev Neuro-

psychol. 25:251--279.

Crone EA, Zanolie K, van Leijenhorst L, Westenberg P, Rombouts SA.

2008. Neural mechanisms supporting flexible performance adjust-

ment during development. Cogn Affect Behav Neurosci. 8:165–177.

Dale AM. 1999. Optimal experimental design for event-related fmri.

Hum Brain Mapp. 8:109--114.

Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral control.

Nat Neurosci. 8:1704--1711.

Doya, K. 2008. Modulators of decision making. Nat Neurosci. 11:410–416.

Eppinger B, Mock B, Kray J. 2009. Developmental differences in

learning and error processing: evidence from ERPs. Psychophysiol-

ogy. 46:1043--1053.

Frank MJ, Claus E. 2006. Anatomy of a decision: striato-orbitofrontal

interactions in reinforcement learning, decision making, and

reversal. Psychol Rev. 113:300--326.

Frank MJ, Kong L. 2008. Learning to avoid in older age. Psychol Aging.

23:392--398.

Frank MJ, Seeberger LC, O’Reilly RC. 2004. By carrot or by stick: cognitive

reinforcement learning in parkinsonism. Science. 306:1940--1943.

Friston KJ. 1994. Functional and effective connectivity in neuroimaging:

a synthesis. Hum Brain Mapp. 2:56--78.

Galvan A. 2010. Adolescent development of the reward system. Front

Hum Neurosci. 4:6.

Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, Casey BJ. 2006.

Earlier development of the accumbens relative to orbitofrontal

cortex might underlie risk-taking behavior in adolescents. J Neuro-

sci. 26:6885--6892.
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